

INTEGRATED RESOURCE PLAN

2020

INTEGRATED RESOURCE PLAN

1	1.	STATEMENT OF OBJECTIVE								
2		Lockhart Power Company's (LPC) objective in developing an Integrated Resource Plan								
3		(IRP) is to minimize our long run total costs and produce the least cost to our customers								
4		consistent with the availability of an adequate and reliable supply of electric energy while								
5		maintaining system flexibility and considering environmental impacts. We intend for the								
6		plan to also improve customer service, offer additional customer options, and improve								
7		efficiencies of energy usage.								
8										
9	2.	RELEVANT SUPPORTING DOCUMENTATION								
10		a. See ATTACHMENTS								
11		1 SUPPLY RESOURCES								
12		2 DEMAND FORECAST								
13		3 SUPPLY AND SALES FORECAST								
14		4 ENERGY PRODUCED FROM ALL ENERGY RESOURCES								
15		5 PLANNED ELETRICAL TRANSMISSION INVESTMENTS								
16										
17	3.	SUPPLY RESOURCES								
18		LPC presently utilizes ten sources of supply, including nine generation stations and								
19		purchases from Duke Energy (See Attachment 1). More than 99% of the power LPC self-								
20		generates is renewable energy. LPC utilizes a firm wholesale PPA with Duke Energy to								
21		provide its generation needs beyond the amount it self-generates. LPC generates								
22		approximately one-quarter of its own load with renewable energy with the remainder								
23		purchased from Duke Energy (See Attachment 4). Duke Energy's rates to LPC are								

1		presumptively just and reasonable, having been permitted by the FERC. We plan to
2		continue to use Duke Energy to provide a firm load-following supply for the foreseeable
3		future. However, LPC intends to investigate other sources to determine if the costs and
4		benefits, both short run and long run, meet the objectives of our IRP. The sources we
5		intend to investigate include, but are not limited to the following:
6		<u>GENERATION</u> Additional cost effective renewable energy generation resources;
7		cost effective natural gas generation resources.
8		
9	4.	VARIOUS ENERGY AND DEMAND ALTERNATIVES, EFFICIENT ENERGY
10		CHOICES AND PROPER PRICING SIGNALS
11		LPC has done and continues to do the following:
12		A. Designed its rates to economically encourage improved load factors and
13		to reduce monthly demands by:
14		 Incorporating a demand penalty by use of a demand ratchet
15		in its residential rates. This encourages peak shaving.
16		2. Dividing its commercial and industrial rates into a first 200
17		hours use of billing demand rate and an over 200 hours use of
18		billing demand rate with the rates in the latter considerably less
19		expensive than the first 200 hours use block. This encourages peak
20		shaving.
21		 Incorporating conservation requirements in its Residential -
22		All Electric and General Service - All Electric rates. This
23		encourages conservation.
24		 Designing its Residential and Residential - All Electric
25		rates such that they are identical during the summer months, the
26		season of LPC's system peak. This encourages peak shaving and
27		conservation.

1		 Designing its General Service Commercial and General
2		Service - All Electric rates such that they are identical during the
3		summer months, the season of LPC's system peak. This
4		encourages peak shaving and conservation.
5		 Converting its Residential rate and Residential - All
6		-Electric rate (summer months) from a declining block rate to an
7		inverted rate. This encourages conservation.
8		 Designing a Solar rider for its residential customers
9		
10	5.	EVALUATING POTENTIAL OPTIONS -
11		LPC will employ unbiased analysis techniques for potential options included in its IRP.
12		LPC will evaluate each option by including all appropriate costs and benefits and will
13		provide a detailed explanation with supporting evidence for our choice.
14		
15	6.	EVALUATING THE COST EFFECTIVENESS OF SUPPLY-SIDE AND
16		DEMAND SIDE OPTIONS
17		LPC has adopted an interruptible service demand-side management program offered by
18		Duke Energy. Currently approximately one-fourth of LPC's industrial customers are
19		enrolled in the program. This program encourages peak shaving.
20		
21	7.	MEASURE OF NET BENEFITS
22		LPC will provide the net benefits resulting from the options chosen for use, keeping
23		within the objective stated in Section 1. Benefits are considered to be, but are not limited
24		to, cost savings, peak load shaving, conservation, load shifting, valley filling,
25		environmental concerns, improvement of customer service, offering of additional
26		customer options, improved efficiencies of energy usage, and improved outage times and
27		reliability, and economic development impact on the community.
28		

1	8.	ENVIRONMENTAL COSTS
2		LPC will consider environmental costs on a monetized basis where reasonable and
3		sufficient data is available in its planning process and evaluation of options. Those
4		environmental costs that cannot be monetized will be addressed on a qualitative basis
5		within the planning process and evaluation of options. The environmental costs referred
6		to here are those costs associated with demand or supply side options which impact the
7		customer directly or indirectly.
8		
9	9.	DEMAND AND ENERGY FORECAST
10		See Attachments 2 and 3
11		
12	10.	EVALUATION AND REVIEW OF EXISTING DEMAND-SIDE OPTIONS
13		See Section 4 Above
14		
15	11.	FUTURE STUDIES
16		LPC continues to evaluate potential renewable energy initiatives and other potential
17		supply-side opportunities. In particular, as the cost of solar generation equipment
18		continues to drop, potential opportunities to cost-effectively provide smaller utility-scale
19		solar power for our coustomers will continue to be studied.
20		
21	12.	FLEXIBILITY AND QUICK RESPONSE
22		LPC intends to remain flexible enough to react quickly to changes in a manner consistent
23		with minimizing costs while maintaining reliability.
24		
25	13.	PLANNED ELECTRICAL TRANSMISSION INVESTMENTS
26		LPC is committed to maintenance and improvement of the tranmission system by making
27		investments in short and long term capital budgeted projects as seen in ATTACHMENT
28		5.

1		
2	14.	THIRD PARTY POWER PURCHASES
3		LPC will investigate other purchase sources if the occasion arises and is willing to pursue
4		any other purchase sources to determine if the costs and benefits, both short run and long
5		run, provide our customers with the options consistent with our IRP objective.
6		
7	15.	NEW TECHNOLOGIES
8		LPC will continuously evaluate, pursuant to its IRP objective, new technology for both
9		demand-side and supply-side options. In addition to advances in solar generation
10		technology, Lockhart Power Company keeps up-to-date on advances in hydrokinetic and
11		similar technologies that could one day be cost effectively deployed in existing water
12		conveyances.
13		
14	16.	FUTURE SUPPLY-SIDE OPTIONS
15		LPC presently has no certain scheduled supply side options other than those described in
16		Section 3. LPC is monitoring development of the solar generation market in South
17		Carolina, including proposed legislative changes, and will respond to any changes in a
18		manner that is cost effective and appropriate for its customers.
19		
20	17.	CAPTURING LOST OPPORTUNITY RESOURCES
21		LPC gives attention to capturing lost-opportunity resources which include cost-effective
22		energy efficiency savings such as in new construction, renovation, and in routine
23		replacement of existing equipment. In routine replacement of any and all equipment,
24		LPC includes energy and efficiency savings as a component of evaluation.
25		
26	18.	DYNAMICS OF IRP PROCESS
27		LPC realizes that the IRP process is dynamic and that modifications may be necessary
20		over time. As new issues arise, existing issues or components of the plan change in

1	significance and improved analysis techniques developed; LPC intends to file revisions to
2	its IRP with The Public Service Commission of South Carolina and request that the
3	Commission incorporate the revision into LPC's IRP or approve it as a separate
4	consideration

Supply Resources

Facility Name	Location	Nameplate Capacity	Rate Base?	Fuel Source Water (Non- Consumptive)		
Lockhart Hydro	Lockhart, SC	18 MW	Yes			
Lower Pacolet Hydro*	Pacolet, SC	0.8 MW	Yes	Water (Non- Consumptive)		
Pacolet Diesel	Pacolet, SC	5.5 MW	Yes	Diesel		
Union Diesel	Union, SC	7.3 MW	Yes	Diesel		
Wellford Renewable Energy Facility*	Wellford, SC	1.6 MW	Yes	Landfill Gas		
Upper Pacolet Hydro*	Pacolet, SC	1.1 MW	Yes	Water (Non- Consumptive)		
Lockhart Minimum Flow Hydro*	Lockhart, SC	0.8 MW	Yes	Water (Non- Consumptive)		
Lockhart Bio- Energy, LLC Union Renewable Energy Facility*	Union, SC	3.2 MW	No	Landfill Gas		
Buzzard Roost Hydro (As of 6-1-20)	Greenwood, SC	15 MW	No	Water (Non- Consumptive)		
Purchases from Duke Energy (as Firm Customers)	N/A	Load Following	N/A	N/A		

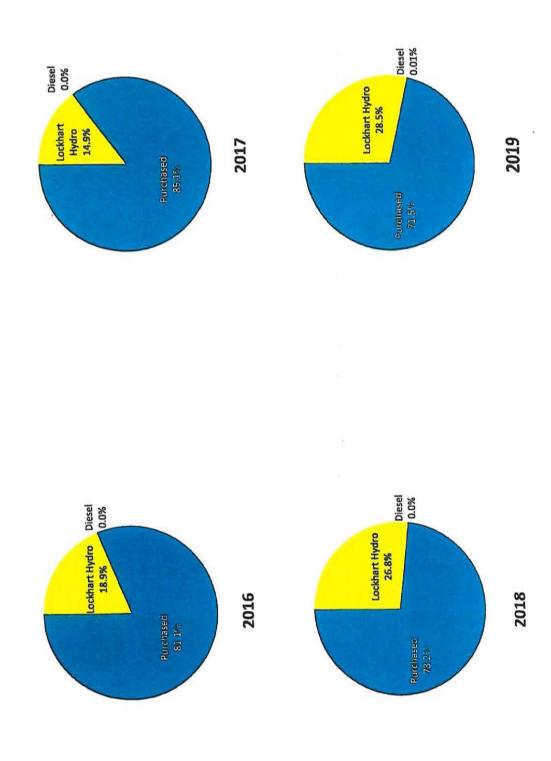
^{*}Notes: Power generated from these facilities is currently sold off-system under contracts. Revenues from the facilities in rate base flow to Lockhart Power Company's customers.

DOCKET NO. 2019-227-E & 2020-11-E ORDER NO. 94-348 & 98-502

SUMMER DEMAND FORECAST

									-0		1822	
2034	3.77	2034	16.5	9	7.3	47.1	677		2034	72.0	2034	16.5 6 7.3 42.2 72.0
2033	76.7	2033	16.5	9	7.3	46.9	76.7		2033	71.2	2033	16.5 6 7.3 41.4 71.2
2032	75.9	2032	16.5	9	7.3	46.1	75.9		2032	70.5	2032	16.5 6 7.3 40.7 70.5
2031	75.2	2031	16.5	9	7.3	45.4	75.2		2031	8.69	2031	16.5 6 7.3 40.0 68.8
2030	74.5	2030	16.5	9	7.3	44.7	74.5		2030	69.1	2030	16.5 6 7.3 39.3 69.1
2029	73.7	2029	16.5	9	7.3	43.9	73.7		2029	68.5	2029	16,5 6 7.3 38.7 68.5
2028	73.0	2028	16.5	9	7,3	43.2	73.0		2028	67.8	2028	16.5 6 7.3 38.0 67.8
2027	72.3	2027	16.5	9	7.3	42.5	723	TS.	2027	67.1	2027	16.5 6 7.3 37.3 67.1
2026	71.5	2026	16.5	9	7.3	41.7	71.5	WINTER DEMAND FORECAST	2026	66.5	2026	16.5 6 7.3 36.7 66.5
2025	70.8	2025	16.5	9 4	7.3	410	70.8	EMAND	2025	65.8	2025	16.5 6 7.3 36.0 65.8
2024	70.1	2024	4	2 0	7.0	403	70.1	INTER D	2024	65.1	2024	16.5 6 7.3 35.3 65.1
2023	69.4	2023	4	0.0	9 6	2 00	69.4	3	2023	64.5	2023	16.5 6 7.3 34.7 64.5
2022	68.8	2022	9 0	10.0	۵ ;	2 6	68.8		2022	63.9	2022	16.5 6 7.3 34.1 63.9
2021	68.1	2021		6,0	٥ ;	3.5	68.1		2021	63.2	2024	16.5 6 7.3 33.4 63.2
2020	67.4	2020	,	16.5	9	3	57.6 67.4		2020	62.6	0000	16.5 6 7.3 32.8 62.6
EVETTER CHAMER PEAK	DEMAND IN MWS SYSTEM PEAK DEMAND		DEMAND SOURCES	LOCKHART HYDRO GENERATION	PACOLET DIESEL GENERATION	UNION DIESEL GENERATION	PURCHASES FROM DUKE ENERGY TOTAL DEMAND SOURCES			SYSTEM WINTER PEAK DEMAND IN MW'S SYSTEM PEAK DEMAND		DEMAND SOURCES LOCKHART HYDRO GENERATION PACCLET DIESEL GENERATION UNION DIESEL GENERATION PURCHASES FROM DUKE ENERGY TOTAL DEMAND SOURCES

Note: LPC generation resources that provide off-system sales per long-term contracts are excluded.


Docket NO. 2019-227-E & 2020-11-E Order NO. 94-348 & 98-502

SUPPLY AND SALES FORECAST (MWH)

2034	389,990 852 22,030 412,872	2034	76,121 23 32 336,696 412,872
2033	386,129 3 852 21,812 408,792 4	2033	76,121 23 32 332,616 408,792
2032	382,306 3 852 21,596 404,753	2032	76,121 23 328,577 404,753
2031	378,521 852 21,382 400,754	2031	76,121 23 32 324,578 400,754
2030	374,773 852 21,170 396,795	2030	76,121 23 32 320,619 396,795
2029	371,062 852 20,960 392,875	2029	76,121 23 32 316,699 392,875
2028	367,388 852 20,753 388,983	2028	76,121 23 32 312,817 388,993
2027	363,751 852 20,547 385,150	2027	76,121 23 32 308,974 385,150
2026	360,148 852 20,344 381,345	2026	76,121 23 32 305,169 381,345
2025	356,584 852 20,143 377,578	2025	76,121 23 32 301,402 377,578
2024	353,053 852 19,943 373,848	2024	76,121 23 32 297,672 373,848
2023	349,557 852 19,746 370,155	2023	76,121 23 32 293,979 370,155
2022	346,096 852 19,550 366,499	2022	76,121 23 32 290,323 366,499
2021	342,670 852 19,357 362,878	2021	76,121 23 32 286,702 362,878
2020	339,277 852 19,165 359,294	2020	76,121 23 32 283,118 359,294
	System Requirements Metered Sales Company Use Losses Required System Input		Supply Sources Lockhart Hydro Generation Pacolet Diesel Generation Union Diesel Generation Purchases from Duke Total Supply

Note: Under the current Duke Energy PPA, the Pacolet and Union Diesel Generation stations are only operated in emergency situations.

ENERGY SOURCES IN PERCENT OF MWH'S INPUT

Note: Purchased Power obtained from Duke Energy

ATTACHMENT 5

Electrical Transmission Investments Planned

- Replace 34 kV Transmission Line Fault Indicator System
- Replace 34 kV Transmission Breaker at Duke–Lockhart Tie Station
- Replace 100 kV Transformer at Duke-Lockhart Tie Station